- 开元体育·(中国)官方网站院士观察:我国智慧农业的现状与展望
- 开元体育官方网站入口农业传感器技术在我国的应用和市场:现状与未来展望
- 开元体育智能化 信息化 高普及 我市农业机械化水平迈入新时代
- 开元体育官方网站入口河北盐山智能化养殖 有“智”更有“质”
联系人: 张生
手机: 13800000000
电话: 400-111-7777
邮箱: admin@laiweichiluntai.com
地址: 广东省广州市开元体育·(中国)官方网站
开元体育官方网站入口农业传感器技术在我国的应用和市场:现状与未来展望
开元体育官方网站入口农业传感器技术在我国的应用和市场:现状与未来展望农业传感器技术是农业信息化的基础,是实现农业现代化的核心要素和关键支撑之一。首先,本文在总结农业传感器技术在智能农机装备、农用无人机遥感及农业物联网三方面的研究及应用现状的基础上,对我国农业传感器技术需求和市场发展进行了深入分析。其次,通过技术产业调研分析开元体育,对农业传感器产业化、市场化及未来的发展趋势进行了总结与展望。最后,凝练了农业传感器产业领域的16项关键技术,并在此基础上开展了德尔菲法专家问卷调查,阐明了农业传感器最重要的属性是通用性,明确了相关技术发展最大的制约因素是基础理论和研发投入,提出了农业传感器技术将朝着低成本化、高稳定性、高智能化、可移植性、可操作性方向发展。本文可为我国农业传感器技术研发和产业发展提供参考。
。然而,随着我国农业劳动力减少、老龄化问题日益凸显、部分地区耕地地力下降等关系到农业可持续发展问题的出现,如何推动农业持续、高质、高效生产已成为亟待解决的民生和社会问题。利用现代化信息技术成果,实现传统农业向智慧农业转变,是农业农村部在2011年12月《农业科技发展“十二五”规划》中就已确立的农业发展方向。十余年来,随着我国科学技术的不断发展,越来越多的新理论、新方法、新技术和新材料被应用于农业生产中。通过多学科交叉和技术融合,我国农业生产方式正在不断向智慧农业迈进。智慧农业是农业发展的高级阶段,它集中利用了传感与测量技术、计算机网络与通信技术、自动控制和人工智能等多种现代信息技术,使田间智慧种植、可视化管理、智能预警、智能决策等作业任务在农业生产中逐步得到示范与应用。
。农业传感器在实现农业生产自动化、药肥饲料等农资用量精确化、智能物流运输信息化等环节中扮演着重要角色。农业传感器技术及其装备的运用具有提高农业生产效率、保证食品安全、保护生态环境等独特优势。因此,农业传感器的大规模生产和应用是我国农业寻求模式转变和升级的必要条件和必经之路。
。总体而言,农业传感器产业在智慧农业的发展过程中发挥着重要作用,对实现科学监测,合理种植,帮助农户抗灾、减灾及增产、增收,提高农业综合效益具有重要意义。然而,我国农业传感器,尤其是高端农业传感器,严重依赖进口,国内产业缺口巨大。国产农用传感器核心元器件的生产和应用不足,无法满足农业物联网、智慧农业快速发展需求,已成为我国智慧农业发展的瓶颈。通过加快培育和发展农业战略性新兴产业、延伸农业产业链,农业传感器产业将引领现代农业产业结构的全面升级。
农田土壤信息传感器主要用于检测土壤养分(氮、磷、钾、有机质等含量)及基本理化特征(土壤质地、含水量、pH值、电导率等)。传统农田土壤信息传感器技术存在检测参数单一、车载便携式传感器不足、物联网化程度不高等问题。近年来,利用光谱分析方法检测土壤肥力及理化参数的应用逐渐增多,例如:利用γ射线光谱仪可获取高精度光谱数据,为土壤理化性质监测提供前提条件;利用可见光-近红外土壤水分传感器可有效排除温度和光照强度干扰,从而提供精确的土壤水分信息。该类技术的优势在于可以降低分析成本,提高分析效率,有助于实现土壤肥力参数的实时测量,对于实践和推广精细农业具有重要意义。
作物生长信息及病虫害监测传感器主要用于检测植物的外观尺寸(株高、叶面积、茎秆粗细等)、胁迫情况(缺水、缺素、药害等)及病虫草害情况等表型性状信息。由于作物光谱反射特征与作物叶绿素、氮素等重要营养指标具有高度相关性,采用光谱方法检测作物叶绿素含量、施氮水平及病虫草害严重程度成为植株生长信息获取的重要手段。目前,对叶绿素和氮素的测量主要采用手持式检测装备,其中大部分使用光谱方法进行,具有工作量大、检测效率不高、检测精度容易受环境影响的特点。因此,开展准确且稳定的车载实时在线叶绿素及氮素检测装置研究,对利用智能化农机实现叶绿素和氮素的高效检测意义重大。对病虫害的检测最初多采用破坏性的检测方式,检测周期长、成本高,且会对农作物造成机械损伤。目前,对病虫害的检测正在朝快速无损检测方向发展,采用的检测方法主要有可见/近红外光谱成像、高光谱成像、荧光光谱成像、荧光成像和数字图像处理等。国内农田病虫草害感知技术还处在试验研究阶段,试验环境也一般在实验室内,还未真正实现大规模机载田间环境下的智能化准确检测。伴随深度学习与大数据技术的快速发展,基于大数据和人工智能的植物表型信息获取方法也逐渐成为研究热点
作业环境传感器可对工作中的农机装备位置、地形及周边障碍物情况进行实时检测,结合自动导航的智能控制策略指导农机实现最佳路径规划和避障。农机装备的自动定位与导航是实现农机自动驾驶的基础,主要利用全球导航卫星系统(global navigation satellite system, GNSS)定位技术和视觉定位技术。随着GNSS定位技术向民用领域的开放,利用载波相位差分技术的实时动态定位精度可达厘米级,相关技术和产品在精准农业领域得到了广泛应用,并促进了农业自动导航技术的发展
。视觉定位技术使用摄像头获取环境信息,通过对作业环境建模实现农机装备的自动定位。视觉同步定位与建图(simultaneous localization and mapping, SLAM)技术是实现高精度视觉定位的关键技术。近年来,随着SLAM技术与深度学习算法的结合,视觉定位技术的抗干扰能力与精度得到了显著提高。智能农机装备在作业时对障碍物的感知是其在复杂开放的非确定性农田环境下安全可靠工作的保证。目前,障碍物检测技术及装备主要包括机器视觉、红外、和激光雷达(light detection and ranging, LiDAR)等。这些技术在障碍感知能力上各有优缺点,将它们进行有效集成,可进一步提高农机装备的障碍感知能力和稳定性。
,进而控制执行机构调整耕作深度,达到耕作深度的闭环控制效果,保证农机在深松耕作时耕深的一致性。播种机械作业参数感知技术一般利用激光传感器实现对播种数量的统计,并可以及时发现播种过程中排种器故障或排种管堵塞造成的漏种和重种等问题,从而有效避免发生缺苗、漏苗现象,保证作物产量。田间管理机械一般包括施肥机械、灌溉机械、植保机械等,不同类型的田间管理机械具有不同的检测作业参数。例如,植保机械作业时,系统喷雾压力、喷雾流量、喷杆姿态和运动状态等多个参数对作业质量均具有直接影响,因而在植保作业时,需要对喷雾压力和流量等信息进行实时监测;施肥机械和灌溉机械则分别需要对植株的缺素和缺水情况进行检测,以达到喷施量精准、喷洒均匀的效果。收获机械作业参数感知技术根据谷物损失传感器、转速传感器以及返回的实时信息来调整作业参数,从而减小收获过程中谷物的损失和破损,有利于提高谷物产量。此外,针对各类农业机械的发动机控制与监测的传感器还有空气流量(mass air flow, MAF)传感器、爆震传感器、氧传感器等,可为判断发动机技术状态和故障提供依据。
,已被广泛应用于农业领域,帮助用户完成大区块农田费时费力的任务,提供正确的决策管理,并有效提高作物产量。
、热红外相机、多光谱相机和高光谱成像仪等,并结合先进的无人驾驶飞控技术、全球定位系统(global positioning system, GPS)差分定位技术、遥感传感器技术、无线通信遥控技术和无线图像回传技术等,实现空间遥感信息的自动化、智能化快速获取,并完成遥感数据处理、建模和应用分析开元体育。
、作物营养与冠层温度诊断、作物面积与产量估计等方面。例如:利用无人机搭载高清数码相机和近红外相机捕获作物育种基地的高清影像,反演植株的株高、叶色差异、病虫害程度等育种关键表型参量,可有效地辅助作物育种;利用无人机搭载的成像光谱仪获取作物冠层高光谱影像,并通过构建新的比值光谱指数线性模型来评估植株叶片全氮含量,且无人机高光谱影像反演的植株叶片全氮含量分布范围与地面实际情况具有较高的一致性;利用固定翼无人机与多光谱相机组成的遥感平台对冬小麦进行多期遥感观测发现,优化后的基于植被指数的估产模型可以快速有效地诊断作物长势和评估作物产量。以上研究为区域尺度作物氮素含量的空间反演以及作物长势诊断与产量评估提供了技术依据。
。与此相反,我国激光雷达传感器的研发则表现出百家争鸣的态势。当前,国内对多光谱相机的研发仅面向科研需求,其在性能、重量、成本和可靠性等多方面均无法满足大规模农业生产需要,使得国内农业无人机用户只能选用价格昂贵的进口多光谱传感器,同时还面临无法因地制宜地根据我国农情监测需求配置参数的境况。
,其核心在于针对农业产业和农作物本体研发和制备高精准度、高稳定性、微型化、低成本的先进传感设备。
。农业物联网中使用的传感器主要包括农业环境信息传感器和农业动植物生命生理信息传感器。农业环境信息传感器主要通过对动植物生长过程中空气、光照、温度、湿度、水分、土壤养分等信息进行检测,及时了解外部环境的变化,并对环境因素进行综合监测和评估,从而为动植物的健康生长创造更有利的条件,促进动植物管理质量的提升。目前,农业物联网中常用的环境传感器主要包括光照、温度、湿度、水分、气体浓度、雨量、pH值、土壤养分等传感器。这些传感器已经逐步从实验室研发走向实际应用。我国已有较多的科研机构和涉农物联网企业开展了此类传感器的研发和推广,制备了一批低成本、小型化的实用农业环境信息传感器,在我国传统农业改造升级中发挥了重要作用。
。该类传感器主要通过对植物叶片温湿度、病虫害、养分、茎流、茎秆、果实尺寸、糖分、光合、呼吸、蒸腾及动物行为、叫声、体温、体重、食欲等信息进行采集,分析动植物的生长信息和生理信息,从而判断动植物的生长状态。此外,一些新型的微型传感器也是当前的研究热点,例如可穿戴式植物应变和水分传感器、监测植物叶片挥发性有机物释放的电子鼻、检测植物叶面组织pH值变化的微型生物传感器、检测作物胁迫信号分子的纳米传感器等。然而,这类动植物生命生理信息传感器多处于实验室研究阶段,成本昂贵且精度有限,距离大规模推广应用尚需一定的时间。
现阶段,农业传感器技术已经渗透至现代农业的各个生产环节,农业生产效率与农业传感器相关技术成果的产业化进程息息相关。当前,我国农业传感器产业在政府的资金与政策扶持下,正逐步从小规模、低水平的信息孤岛式研发向规模化、多样化发展。然而,产学研结合不够紧密、农业消费者财力有限以及我国小农经济模式下农业个性化需求较强等因素,导致农业传感器技术直接服务于市场还有较大距离。以农户为根本,农户、企业、科研机构之间紧密结合的产业化体系尚未建立,科技成果产业化进程较慢。
为使我国农业传感器产业从高度依赖政策支持逐渐过渡至“政府-市场”双轮驱动的发展机制,需要有效刺激消费需求及民营资本的进入。深入了解我国农业场景下的个性化需求,结合我国农户的消费水平,以市场为导向制定产业发展策略与方针,显得尤为重要。企业在市场中起着载体及平台的作用,决定着资本与商品之间的对等与对价。本文以调查问卷的形式对相关企业进行了调研,从企业的视角了解农业传感器技术的市场需求及发展现状,并对农业传感器技术的产业化与市场化进程、未来发展趋势等进行了分析。
在本研究中,共有14家企业参与问卷调查,依照企业主营业务的不同,可划分为农业企业、工业信息化企业和农业信息化企业,基本涵盖了农业传感器技术领域的企业类型。从类型分布来看,以工业信息化为主的企业有7家,以农业信息化为主的企业有5家,另有2家为农业企业。问卷的主要内容包括企业对农业传感器及测控终端服务市场的发展现状与未来潜力的看法,以及企业自身在行业内的生存现状。调查结果如
图1所示。当被问及未来5—10年最具市场发展潜力的农业传感器或测控终端产品时,有10家企业选择了农产品/食品安全检测传感仪器,其次是农业机器人(9家),再次是作物长势检测传感仪器(7家)等农业传感器。
图2所示,在农产品/食品安全检测传感仪器领域的细分仪器中,参与调查的企业大多将目光聚焦在了农产品农药残留检测传感仪器、农产品重金属检测传感仪器与种子转基因识别检测仪器上。农药残留和重金属污染是消费者当前最为关心的食品质量安全问题。此外,伴随着转基因技术研究和应用的迅速发展,消费者对转基因农产品的态度也是社会各界关注的重点。从企业在这些细分的农产品/食品安全检测仪器选择的调查结果中可以看出,消费者的态度与需求是企业最为关心的。以消费需求为代表的市场推动始终是农业传感器技术产业化与商业化的最强动力。
。调查结果(图3)显示,大多数企业最看好该技术领域的病虫害监测机器人、信息监测无人机系统及植保作业无人机系统。其中,病虫害监测机器人是目前农业工作者最关注的产品之一,而农业信息的实时监测系统作为智慧农业必不可少的环节,是农业机器人发展的重点。农业机器人技术是实现农业信息检测的重要手段,也是构成农业物联网系统的核心。企业对该技术的期待也从侧面证明了农业传感器核心技术的攻关不仅仅需要被科研机构所关注,而且需要被市场所感知,产学研的紧密结合并不只是单向的传递,而是双向的刺激与推动。
图4的调查结果中可以看出,大多数企业对叶片病斑、病害、氮素及冠层植被指数、氮素等直接影响作物健康的指标较为重视,而对叶片面积、叶片温度等作物生长指标的关注度一般。尽管作物长势检测信息的获取并不会直接左右消费者的选择,但作物的健康程度,包括病虫害信息,均会对农业生产的末端产品质量造成显著影响,进而反映到产品销量、消费者口碑等市场表现上。由此可见,市场对农业生产技术的指导不只局限于产业链末端的农产品质量检测,更是渗透到了农业生产链的中上游。
通过上述对农业传感器相关企业的调研可以看出,当前农业传感器市场对该技术领域的需求特点主要通过两个主体呈现:消费者需求与民营资本需求。在农业生产链中,越靠近末端产品的传感与测控技术,其对应的消费者敏感度越强,主要体现在企业对农产品/食品安全检测传感技术的青睐上;消费者需求也可通过农业生产链向上游渗透,主要体现在企业对作物长势信息中健康指标的检测尤为重视;与此同时,民营资本也在密切关注农业生产变革与转型升级,主要体现在企业对农业机器人技术的期待上。农业传感器技术的未来发展应充分借助市场推动,根据市场需求,从产业链的末端至上游逐步完成技术升级,构建起“研发-市场”双轮驱动的稳定发展机制。
问卷调查结果表明,对大部分农业技术,专家认为“通用性”是最重要的属性。究其原因,在科技迅速发展的今天,时代的发展和科技的进步推进了科学技术向纵深方向发展,学科之间交叉渗透是科学技术发展的一个主要趋势。随着现代科技的发展,学科在高度分化基础上高度综合的特点说明,科技的发展需要不同学科和技术的横向联合以形成整体优势,尤其是农业这一多学科交叉的领域,与其他学科的结合更是越来越突出,如工程技术、人工智能、生物化学等学科的交叉渗透,使得“农业工程”脱颖而出,有效推动了智慧农业、农业物联网的健康稳步发展。除通用性之外,专家认为,农业智能决策及控制传感器技术开元体育、农用无人机全自主飞行技术、农机机器视觉传感技术以及植物养分信息感知传感器技术的首要属性为核心性,在一定程度上说明了这些技术在相关交叉研究领域中的重要地位。
同时,专家指出,农业技术最重要的应用是推动经济发展。在投资、消费、出口三大动力中,我国经济增长在很大程度上需要增强国内外市场的消费,而农业在“衣、食、住、行”消费型产业中占有重要位置。农业发展是当前我国民生导向的急迫需求,同时,农业作为基础性行业,其生产与二、三产业联系紧密,对经济的带动作用强。因此,发展农业就是增强经济发展的基础与后劲。
问卷调查结果显示,研发投入和基础理论是最大的制约因素,说明部分技术的理论基础不够牢固,研发力度有待加强。专家认为,植物茎流量信息感知传感器技术、植物养分信息感知传感器技术、农机装备作业参数传感器技术的人才缺口大,这对高校相关专业的人才培养方向具有一定的指导意义。唯有下功夫夯实理论基础研究,农业的高新技术才能蓬勃发展,并在现代农业发展必需的产业体系、生产体系、经营体系中得到广泛应用。相反,农业基础设施薄弱,科技支撑能力不足,导致农机装备水平较低、农业现代化程度不高、抗灾减灾能力不强,将会严重制约中国农业可持续发展。
专家还认为,我国很多农业技术接近国际水平,部分落后国际水平5年,而植物叶绿素信息感知传感器技术、农业智能物联网感知传感器技术、农机装备作业参数传感器技术等落后国际水平5—10年,有些甚至落后10年以上。值得一提的是,对于附表1中所列技术,美国都处于世界领先水平,但在农用无人机全自主飞行技术上,专家们认为中国更胜一筹。从中国的表现来看,有5项技术跻身世界前二水平。这些结果说明,作为农业大国,中国农业科技整体水平正逐渐接近国际前沿,但部分领域与世界领先水平相比仍存在较大差距,有很大进步空间,这对我国农业技术未来重点研究方向具有重要的参考意义。
此外,在我国,常用农业环境传感器(光、温、水、气)高灵敏度和高稳定性关键技术、农用无人机动力电池研发、位置感知技术已经基本实现大规模应用。对于其他大部分技术,专家预测,在2025年之前可在实验室内实现,在2026—2035年间实现大规模应用。然而,植物养分信息感知传感器技术离大规模应用仍然需要较长的时间。
现阶段,各类型农业传感器的价格,对经济欠发达地区、种植规模较小的农户而言,依然较为高昂,农业从业者很难享受到农业传感器技术给农业生产带来的红利,科技创新转化为生产力的过程受到阻碍。随着大规模集成电路技术和工艺的发展成熟,农业传感器技术可朝低成本化的方向发展,这将对农业科技成果的普及起到推动作用,同时促进新技术、新产品的再研发和再升级。
现有的农业传感器已实现在温室和实验室条件下对环境温湿度、氧气浓度、二氧化碳浓度等多种土壤、作物、气象指标进行稳定精确的测量,但还无法满足在复杂多变的自然环境下长时间稳定工作的需求。此外,检测精度和使用寿命是传感器稳定性的重要指标。为确保持续高效、高精度运行,未来需要开发更加稳定和容错率更高的软硬件设备。一方面能够提高传感器在自然环境中的鲁棒性和检测精度,另一方面也能够降低其维护频率及更换频率,从而降低维护成本,提高经济效益。
目前,农业传感器已经在环境温湿度、光照强度、气体含量、作物营养元素和病虫害检测等方面得到了长足发展,但是现有农业传感器大多对相关指标进行单点和静态测定。未来的高智能化系统能赋予农业传感器从智能监测自身运行状态、节约自身能源策略到对多种复杂外部环境变化做出实时科学决策的能力,实现农业传感器在提高能源效率的同时,做到对目标的全面动态智能化检测。
主要体现在两个方面:一是易操作性,农业传感器相关应用程序的终端用户通常是非技术类一线农业生产人员,因此,操作系统应简单、直接、友好,易于上手。二是互操作性,一方面是人与系统的互动,系统反馈的信息要直观直接,便于使用者制定相应规划,另一方面是不同组件和不同通信技术的互联互通,便于适应未来传感器组件和通信技术的不断升级,增强系统的整体性能。
农业生产方式的不断革新,为农业传感器技术及其市场的发展带来了巨大机遇和挑战。本文通过文献整理与前沿追踪、企业调研与德尔菲法专家问卷调查等形式,对我国农业传感器技术应用与市场的研究现状、技术瓶颈、市场关注度与发展趋势进行了梳理、分析和预测。在总结凝练的16项农业传感器产业关键技术中,经统计分析得出通用性是农业传感器最重要的属性,并提出了未来农业传感器技术将朝着低成本化、高稳定性、高智能化、可移植性、可操作性方向发展。相信随着农业传感器技术基础研究的持续深入、研发投入的不断强化和多学科交叉融合的高效开展,未来农业传感器的新原理、新发展、新应用将日新月异,农业传感器市场也将进一步成熟完善,助力我国的乡村振兴战略。